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Abstract: Several studies indicate that exploring mathematical ideas by using more than one 

approach to prove the same statement is an important matter in mathematics education. In this 

work, we have collected a few different methods of proving the multinomial theorem. The goal is 

to help further the understanding of this theorem for those who may not be familiar with it. These 

proofs can also be used by undergraduate college instructors in a calculus, a discrete mathematics 

or a probability course. 
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INTRODUCTION 

The multinomial theorem is used to expand any sum to an integer power and is an extension of the 

binomial theorem. The binomial theorem only deals with the addition of two variables to an integer 

power, whereas the multinomial theorem deals with more than two variables. The binomial and 

multinomial theorems are important results in elementary mathematics, and aside from the 

straightforward application of expanding polynomials of high degree, they also have applications 

in probability, combinatorics, number theory, and several other fields of mathematics. The 

multinomial theorem is written as follows: 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚)𝑛 = ∑
𝑛!

𝑘1! 𝑘2! ⋯ 𝑘𝑚!
𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚

𝑘𝑚

∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 

Here, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚 ≥ 0 and the multinomial coefficient 
𝑛!

𝑘1!𝑘2!⋯𝑘𝑚!
= ( 𝑛

𝑘1,𝑘2,⋯,𝑘𝑚
) is the number 

of possible ways to put 𝑛 balls into 𝑚 boxes. 

When introducing the binomial theorem, most instructors often employ various methods to engage 

students and deepen their understanding (Flusser & Francia, 2000). Two typical approaches are:  
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1. Algebraic derivation: The instructor may start by introducing the binomial theorem and its 

formula, then proceed to prove it algebraically using mathematical induction or 

combinatorial arguments.  

2. Pascal’s triangle: The instructor may start by introducing Pascal’s triangle and its 

connection to binomial coefficients, then show how each row corresponds to the 

coefficients in the binomial expansion.  

The Multinomial theorem serves as a generalization of the binomial theorem, extending its 

principles from binomials to multinomials. We will present several approaches to prove the 

multinomial theorem in the following section.  

Mathematics educators agree that exploring mathematical ideas by using more than one approach 

to solving the same problem (e.g., proving the same statement) is an essential element in the 

development of mathematical reasoning (NCTM, 2000; Polya, 2004; Schoenfeld, 2014; Dreyfus, 

Nardi & Leikin, 2012; Stupel & Ben-Chaim, 2013; Stupel & Ben-Chaim, 2017). Dreyfus, Nardi 

& Leikin (2012) discusses the pedagogical importance of multiple proof tasks and of taking into 

account the mathematical, pedagogical, and cognitive structures related to the effective teaching 

of proof and proving. Leikin (2009) indicates that the differences between the proofs are based on 

using: (1) different representations of a mathematical concept; (2) different properties (definitions 

or theorems) of mathematical concepts from a particular mathematical topic; (3) different 

mathematics tools and theorems from different branches of mathematics; or (4) different tools and 

theorems from different subjects (not necessarily mathematics). In our case, we apply the third 

type of differences between the proofs; we shall present various proofs using the tools and 

theorems of combinatorics, induction, probability, and differential calculus.  

Proofs of the Multinomial Theorem 

Combinatorial proof and induction proof are two classical methods which can be easily found in a 

standard textbook or with an online search. For readers’ convenience, we state them here first.  

Combinatorial Proof 

Given variables x1,x2,···xm, we look to expand 

(x1 + x2 + ···+xm)n 

By definition, we know that this can be expressed as 

(1.1) 

  (1.2) 

n times 
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Each term of this expression when expanded will be of the form 

  (1.3) 

where  and C is a numerical coefficient. To determine the value of C, consider the 

following method. Suppose we choose x1 from k1 sets of parentheses; there are  ways this can 

be done because there is no more than one of x1 in each set. Now when we choose x2 from k2 sets 

of parentheses, we cannot choose the same set that we have already chosen x1 from. This means 

that we are left with n−k1 sets from which we can choose x2. So the number of ways to choose x1 

from k1 sets and x2 from k2 sets is as follows: 

  (1.4) 

Following the same approach for the remaining x values, we can see that the coefficient for each 

term can be represented as such: 

  (1.5) 

By definition, 

  (1.6) 

When we expand our coefficient by the definition above, many of the terms will cancel, leaving 

the following value for determining the coefficient: 

  (1.7) 

Finally, to obtain every term from the expansion of (x1 + x2 + ··· + xm)n, we add together every 

possible combination of k1 + k2 + ··· + km = n. 

  (1.8) 

Induction Proof 

Proof. We will prove this with induction on m. To start, we show that this holds for m = 1. 

  (2.1) 

Next, suppose the multinomial theorem holds for m. Then 

(𝑥1 + 𝑥2 + ⋯ + (𝑥𝑚 + 𝑥𝑚+1))𝑛 = ∑ (
𝑛

𝑘1𝑘2 ⋯ 𝑘𝑚−1𝐾
) 𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚−1

𝑘𝑚−1(𝑥𝑚 + 𝑥𝑚+1)𝐾

∑ 𝑘𝑖+𝐾=𝑛𝑚−1
𝑖=1
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                                                                                                                                                    (2.2) 

Applying the binomial theorem to the right-hand side gives us 

 

(𝑥1 + 𝑥2 + ⋯ + (𝑥𝑚 + 𝑥𝑚+1))𝑛

= ∑ [(
𝑛

𝑘1𝑘2 ⋯ 𝑘𝑚−1𝐾
) 𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚−1

𝑘𝑚−1 ∑ (
𝐾

𝑘𝑚𝑘𝑚+1
) 𝑥𝑚

𝑘𝑚𝑥𝑚+1
𝑘𝑚+1

𝑘𝑚+𝑘𝑚+1=𝐾

]

∑ 𝑘𝑖+𝐾=𝑛𝑚−1
𝑖=1

 

                                                                                                                                                    (2.3) 

Then since 

( 𝑛
𝑘1𝑘2⋯𝑘𝑚−1𝐾

) ( 𝐾
𝑘𝑚𝑘𝑚+1

) =
𝑛!

𝑘1!𝑘2!⋯𝑘𝑚−1!𝐾!
∙

𝐾!

𝑘𝑚!𝑘𝑚+1!
=

𝑛!

𝑘1!𝑘2!⋯𝑘𝑚!𝑘𝑚+1!
                (2.4) 

it follows that 

(𝑥1 + 𝑥2 + ⋯ + (𝑥𝑚 + 𝑥𝑚+1))𝑛 = ∑ (
𝑛

𝑘1𝑘2 ⋯ 𝑘𝑚+1
) 𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚+1

𝑘𝑚+1

∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 

  (2.5) 

Since we now have shown that m ⇒ m + 1, we can conclude by the principle of induction that this 

statement holds for all integers m greater than or equal to 1. 

Probability Proof 

The following is a proof in Kataria (2016), which is an extension of the proof in Rosalsky (2007). 

Consider an experiment with n independent trials. The outcome of each trial results in the 

occurrence of one of the m mutually exclusive and exhaustive events E1, E2, ··· , Em. For each i = 

1,2,··· ,m, let pi be the constant probability of the occurrence of the event Ei and Xi be the random 

variable that denotes the number of times event Ei has occurred. Then, the joint probability mass 

function of the random variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑚 is 

  (3.1) 

where . Also, since (3.1) is a valid statistical distribution, we have 

                                                                 (3.2) 
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By using the distributive property in (1.2), it follows that for all real number xi’s, 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚)𝑛 = ∑ 𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚)𝑥1
𝑘1𝑥2

𝑘2 ⋯ 𝑥𝑚
𝑘𝑚

∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 (3.3) 

where C(n,k1,k2,··· ,km) are positive integers and ki’s are nonnegative integers which satisfy

. Now we need to show that 

𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) =
𝑛!

𝑘1!𝑘2!⋯𝑘𝑚!
                                            (3.4)                                       

Assume xi > 0 for all i = 1,2,··· ,m and define 

  (3.5) 

It follows that 0 < pi < 1 and = 1. Substituting (3.5) into (3.2), we obtain for positive reals 

  (3.6) 

Finally, subtracting (3.6) from (3.3), 

∑ (𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) −
𝑛!

𝑘1! 𝑘2! ⋯ 𝑘𝑚!
) 𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚

𝑘𝑚 = 0, 𝑥𝑖 > 0

∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 

                                                                                                                                                    (3.7) 

Since (3.7) shows the left-hand side equals zero when subtracting (3.6) from (3.3), it follows that 

(3.4) is true. 

Proof with Differential Calculus 

The following proof extends Hwang’s proof of the binomial theorem in Hwang (2009) using 

differential calculus into the multinomial theorem. 

Again, it follows that upon distribution that for any integer n 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚)𝑛 = ∑ 𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) ∏ 𝑥𝑖
𝑘𝑖

𝑚

𝑖=1∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 

                                                                                                                                                    (4.1) 

                                                                                                                                                                                                                          

where the 𝑘𝑖’s are nonnegative integers and 𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) are positive integers. 

Given any set of nonnegative integers 𝑐1, 𝑐2, ⋯ , 𝑐𝑚such that∑ 𝑐𝑖 = 𝑛𝑚
𝑖=1 , we calculate the partial 

derivatives of both sides of (4.1) with respect to each 𝑥𝑖 𝑐𝑖 times for 𝑖 = 1, 2, ⋯ , 𝑚. 
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For the left side of (4.1), since ∑ 𝑐𝑖 = 𝑛𝑚
𝑖=1 , 

𝜕𝑛

𝜕𝑥1
𝑐1𝜕𝑥2

𝑐2⋯𝜕𝑥𝑚
𝑐𝑚 (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚)𝑛 = 𝑛!                                       (4.2) 

                                                                                                                                                                                      

For the right side of (4.1), if and only if 𝑐𝑖 = 𝑘𝑖 for all 𝑖 = 1,2, ⋯ , 𝑚, then 

𝜕𝑛

𝜕𝑥1
𝑐1𝜕𝑥2

𝑐2 ⋯ 𝜕𝑥𝑚
𝑐𝑚

∏ 𝑥𝑖
𝑘𝑖

𝑚

𝑖=1

=
𝜕𝑛

𝜕𝑥1
𝑘1𝜕𝑥2

𝑘2 ⋯ 𝜕𝑥𝑚
𝑘𝑚

∏ 𝑥𝑖
𝑘𝑖

𝑚

𝑖=1

= 𝑘1! 𝑘2! ⋯ 𝑘𝑚! 

                                                                                                                                                    (4.3)                                                                                                                                  

Otherwise,  

 
𝜕𝑛

𝜕𝑥1
𝑐1𝜕𝑥2

𝑐2⋯𝜕𝑥𝑚
𝑐𝑚 ∏ 𝑥𝑖

𝑘𝑖𝑚
𝑖=1 = 0 (4.4) 

Therefore,  

𝜕𝑛

𝜕𝑥1
𝑐1𝜕𝑥2

𝑐2 ⋯ 𝜕𝑥𝑚
𝑐𝑚

[ ∑ 𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) ∏ 𝑥𝑖
𝑘𝑖

𝑚

𝑖=1∑ 𝑘𝑖=𝑛𝑚
𝑖=1

] = 𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚)𝑘1! 𝑘2! ⋯ 𝑘𝑚! 

                                                                                                                                                                        (4.5)                                                                                                                                                                                           

Then from (4.1), (4.2), and (4.5), we have for nonnegative integers 𝑘𝑖satisfying∑ 𝑘𝑖 = 𝑛𝑚
𝑖=1 , 

𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚)𝑘1! 𝑘2! ⋯ 𝑘𝑚! = 𝑛!  

𝐶(𝑛, 𝑘1, 𝑘2, ⋯ , 𝑘𝑚) =
𝑛!

𝑘1! 𝑘2! ⋯ 𝑘𝑚!
 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑚)𝑛 = ∑
𝑛!

𝑘1! 𝑘2! ⋯ 𝑘𝑚!
𝑥1

𝑘1𝑥2
𝑘2 ⋯ 𝑥𝑚

𝑘𝑚

∑ 𝑘𝑖=𝑛𝑚
𝑖=1

 

Thus, we have collected multiple methods of proving the multinomial theorem. 

1. A combinatorial proof. 

2. A proof by induction. 

3. A probability proof. 

4. A proof with differential calculus. 

 

Which means that 
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METHOD  

A case study was conducted in an undergraduate math major junior and senior level topic class at 

Farmingdale State College, with a total of 12 students. The aim of this survey includes: 

1. Test the ability of junior and senior level college math major students to prove the 

multinomial theorem; 

2. Examine math major undergraduate students’ attitudes toward presenting multiple proof 

approaches for the multinomial theorem; 

Step 1: The following question was asked in class. 

Do you think it is valuable to present multiple proof approaches for a same mathematics 

statement? Can you give one or more examples that can be proved in different methods? 

Step 2: The multinomial theorem was presented in class.  

Step 3: The combinatory and induction methods were presented in class. 

Step 4: The probability and differential calculus method were presented in class.  

Step 5: The following question was asked in class: 

Assuming you are the instructor, will you present multiple proofs of the multinomial theorem? Will 

you require your students to know all of them?  

Results 

In step 1, all 12 students agreed that presenting multiple proof approaches for a same mathematics 

statement is important and valuable. However, only 6 students could provide meaningful 

examples. With instructor’s hints, they recalled the proofs of Pythagorean theorem and some 

geometry and combinatory properties.  

In step 2, although 8 students claimed familiarity of the multinomial theorem, initially none of the 

students felt confident in proving it completely.  

In step 3, all 12 students followed the combinatory and induction proofs comfortably, with some 

remembering their use in proving the binomial theorem.  

In step 4, none of the students had learned the probability method or the differential calculus 

method before. After a brief review of the same proof methods for the binomial theorem, they all 

gained better understanding of the same proof methods applied to the multinomial theorem and 

appeared to be impressed with these two additional proofs, especially the probability one.  

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


                            MATHEMATICS TEACHING RESEARCH JOURNAL      161     
                            Golden Fall 2024 
                            Vol 16 no 4 
 
 

 
This content is covered by a Creative Commons license, Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 

4.0). This license allows re-users to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial 
purposes only, and only so long as attribution is given to the creator. If you remix, adapt, or build upon the material, you must 

license the modified material under identical terms. 

 

In step 5, students were allowed to discuss this question. Their consensus was with a suggestion 

that at least present the combinatorial and induction methods. If class time permits, consider 

introducing the probability proof as well. The differential calculus method can be left as optional 

homework for interested students. This approach allows flexibility and caters to varying levels of 

interest and readiness. Some students did worry that presenting more than two methods 

simultaneously might overwhelm and confuse the class. 

DISCUSSION 

While some students struggled initially, exposure to various methods surely enhanced their 

understanding. It can develop students’ divergent reasoning (Kwon et al.  2006), as well as their 

mental flexibility and fluency (Dreyfus, Nardi & Leikin, 2012; Leikin, 2009; Silver, 1997; 

Sriraman, 2003). As an instructor, presenting multiple proofs can enrich students’ mathematical 

experience and foster deeper comprehension of theorems. From an educational viewpoint, such a 

comparison provides teachers and students with interesting connections between different 

viewpoints. Of course, the perspective presented requires a good level of epistemological skill on 

the part of teachers (Bagni, 2008). 

 

CONCLUSION 

For the multinomial theorem, the classroom study indicates that students find the induction 

approach most rigorous. Connecting it to the simpler binomial theorem, which they are already 

familiar with, makes it more accessible. Additionally, the combinatorial proof by counting also 

provides a concrete interpretation and students who enjoying combinatorial structure tend to find 

this approach appealing. Some students also like the probability proof, especially after gaining a 

clear understanding of the ideas presented in Rosalsky (2007). However, some students are not 

accustomed to the differential calculus method, as it can feel quite abstract. Only students with a 

strong background in multivariable calculus tend to follow it through well.  

In general, comparison of different proofs can be an appropriate method to make the nature of 

proof visible to the students (Pfeiffer, 2010). Educators should consider using alternative methods 

for proof, which can provide students with alternative strategies to approach complex problems 

and enhance their understanding of underlying concepts (Mowahed & Mayar, 2023). Exposure to 

diverse proofs also hones students’ problem-solving skills. They learn to adapt, generalize, and 

apply techniques across different scenarios (Stylianides & Ball, 2008). In an undergraduate-level 

mathematics course, when introducing the multinomial theorem, instructors can cover the 

induction and combinatorial methods with students during classroom lectures. For the probability 

and differential calculus approaches, instructors can provide students with materials related to 
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proofs for binomial theorem, such as those found in reference Rosalsky (2007) and Hwang (2009), 

and encourage them to extend these concepts to the multinomial theorem case. This approach 

allows students to explore this topic from different angles and deepen their understanding. Further 

interested instructors and advanced students can even refer to Noble (2022) for a detailed historical 

background review.  
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